
.

A Parallel Incompressible Navier-Stokes Solver with a
parallel Multigrid Elliptic Kernd

John Z. LOU*

Abstracf
We describe numerical algorithms and parallel implementations of a time-depen-

dent, incompressible Navier-Stokes flow solver and a multigrid elliptic solver which is also
used as a computation kernel in the flow solver. ~’he flow solver is based on a second-order
projection method (Bell et. al [2]) applied to a slaggered finite-difference grid. The multigrid
elliptic solver uses the full V-cycle scheme (13riggs, [4]) and was designed to be a general-pur-
pose elliptic solver working on several types of finite-difference grids and for different bound-
ary conditions. A domain-decomposition strategy is used in the parallel implementations for
both the flow solver and the mtdtigrid elliptic solver on all tine and coarse grids. The imple-
mented solvers are numerically stable and computational] y efficient, and they scale very well
to a large number of processors on Intel Paragon and Cra y T3D for problems with moderate
granularity. The solver codes are portable to parallel systems that support MPI, PVM and NX
for interproccssor communications.

1.1 ntroduction
The motivation for our work is to develop efficient and reusable parallel partial dif-

ferential equation (PDF?) solvers that are portable across distributed-memory, message-pass-
ing computers, so that these solvers can be used to solve 1 arge, comput 81 ionall y expensive
physics and engineering problems on high-performance lmrallel computers. A reusable or
template PDIl solver, in our view, is a PDE solver that can be adapted or expanded to solving
a variety of problems using different (component) numerical schemes as needed without a
major rewriting of the solver code. For that purpose, we chose a muhigricl solver and a fluid
flow solver as our testbeds since they are representative of the kinds of numerical schemes and
applications we encounter in the field of scientific computing.

The idea of projection method for solving incompressible Navier-Stokes equations
was first described in a paper by Chorin [6], which is a finite-difference method for solving the
incompressible Navier-Stokes equations in primitive variables. Bell et. al [2] [3] extended the
method to second-order accuracy in both time and space, and used a Godunov procedure com-
bined with an upwind scheme in the discretization of the convection term for improved
nu mcrical stability. Projection method is a type of operat or-splitting met hod which separates
the solutions of velocity and pressure fields with an itera(ive procedure. III particular, at each
time step, the InOITletIh]m equations are solved first for all intermediate velocity field without
the knowledge of a correct pressure field and therefore no incompressibi lit y condition is
enforced. The intermediate e velocit y field is then “ccmwmd” by a projection step in which we

* lou@acadia.jpl. nasa.gov, Jet Propulsion Laboratory, California lnstituk of Technology, Pasadena, CA 91109

1

solve a pressure equation and then use the computed pressure to produce a divergence-free
velocity field. Our projection step, which is based on a pressure equation derived in [1] and
makes use of the highly efficient elliptic multigrid solver we developed, is mathematically
equivalent to but different from the projection step described in [2]. In actual flow simulations,
this prediction-correction type procedure is usually repealed a few times (2 or 3 iterations
seem to be enough from our experiments) until reasonably good velocity and pressure fields
have been reached for that time step. In each time step for computing an N-dimensional (N= 2
or 3) viscous flow problem using this method, we need to solve m x N 1 lelmholtz equations
for the velocity field and nZ Poisson equations for the pressure field, where m is the number of
iterations done at each time step. A fast multigrid elliptic solver is thus very useful to improve
the computational performance of the flow solver. The multigrid solver package we developed
can solve N-dimensional (N< 3) elliptic problems on vertex-centered, cell-centered and stag-
gered grids, and it can deal with Dirichlet, Neumann and periodic boundary conditions.

Since the solvers are implemented on rectangular finite-difference grids, a natural
parallel implementation strategy is domain-decomposition: the global computational grid is
partitioned and distributed to a logical network of processors; message exchanges are per-
formed for grid points lying on “partition boundary-layer s“ (whose thickness is usuall y dic-
tated by the numerical schemes used) to ensure a correct implementation of the sequential
numerical algorithms on the global computational grid. III our implementation of the parallel
multigrid V-cycle and full V-cycle schemes, we apply this domain-decomposition to all coarse
grids as well. ‘l’his means on some very coarse grid, only a subset of allocated processors will
contain at least one grid point on that grid and therefore they are “active” on that grid, whereas
those processors which do not contain any grid point will be idle on that grid, The appearance
of idle processors certainly introduces some complexity for a parallel inqiementation, For
example, the logical processor mesh on which the original computational grid is partitioned
can not be used for communications on those coarse grids for which idle, processors appear.
Depending on the type of finite-difference grid and coarsening scheme, one may also need to
consider how to correctly apply boundary condition in “boundary procxxsors”, which contain
at least one grid point next to the boundary of global grid, on those coarse grids, since bound-
ary processors may change from one grid to another. Dol”nain-decomposition on all coarse
grids is certainly not the only choice. Another approach, e.g., is to duplicate some of the glo-
bal coarse grids in every processor allocated, so that evel y processor can do things on these
coarse grids independently. The drawbacks of the latter a])proach include that it involves quite
some global communication and it also needs some extra storage for global coarse grids.
‘llese requirements may severely affect the sealability of the solver when running on a large
number of processors. It is also not obvious at what stage one should duplicate the global
coarse grid to achieve a good performance. Atthough it seems no approach is perfect for
implementing a parallel classical multigrid cycle [5] [8], we do believe the use of the donlain-
decomposition on atl grids is an appropriate approach fol implementing a general-purpose
parallel multigrid solver. l’he degradation of parallel efficiency due to the idle processors on
some coarse grids has bcwn discussed in many papers (e.g. [5] [8] [9]). ‘1’he performance nlea-
suremenls from our parallel implementations indicate OU] multigrid solver scales quite well on
a 512-node Intel Paragon and a 256-node Gay T3D for both 2D and 31) problems with nmd-
erate sizes of local finest grid. In fact, the percentage of time spent on those coarse grids is
insignificant compared to the total computation time. Silnilar observation was also made in
[8]. As shown by a simple asymptotic analysis in [7], the parallel efficiency of multigrid

2

schemes with the domain-decomposition approach is not qualitatively different from that of a
single grid scheme.

The rest of the paper is organized as follows: in section 2, we present numerical
algorithms for the multigrid solver and the second-order projection method for the inccml-
prcssible flow solver; in section 3, we discuss issues related to the parallel implementations of
the solvers; in section 4, we show both numerical and parallel performance results from the
implemented parallel solvers;’ section 5 gives some of OU1 observations and conclusions.

2. TIIC Numcrkxil Mctlmds

A. The Mulligrid Algorithms

The multigrid schemes we used are the so-called V-cycle and full V-cycle schemes
for solving elliptic PDI?s, discussed in some detail in [4] and [8]. ‘1’hc full V-cycle scheme is a
generalization of the V-cycle scheme which firsl restricts the residual vcclor to the coarsest
grid and then performs a few smaller ~-cycle schemes on all coarse gricls, followed by a com-
plete V-cycle scheme on all grids. The full V-cycle scheme often offers a bctkr numerical eftl-
ciency than the V-cycle scheme by using a much better initial guess of the solution in the final
V-cycle. The parallel efficiency for the full V-cycle scheme, however, is poorer than the V-
cycle scheme because it dots more processing on coarse grids. Following shows a pseudo-
code for the two schemes in a recursive fashion and theil’ graphic representations:

v-cycle Scllcmc:
@ + jkfp (Vh,fl)

f1, Relax n times on A}iuh = f with initial V}’

2. If ~i’ = coarsest grid, then go to 4

c1 se

pi’ + 1;’ (j%’vh)

v2h +- o
V2}’ + MV2h (V2h, f2h)

q. (hr~t%t @ +_ @ +]~hv2h

4. Relax n2 times on A}’d = P with Vh

V-cycle

\/

h
2h

4h

k’ull V-Cycle Scheme:
Vh ~..]7M@ (#,fl)

1. If ~h = coarsest grid, then go to 3

else

~2h <- 1~ [~ -AhVh)

ph +-- ()

V 2h <- FMV2° (V2h,fh)

h Zh
2. (:orrect V}’ +- Vh + 12,,V

3. V}l +- klv}’ (Jz,ay)

full v-cycle

An example: initial grid =32x 32

3

A typical multigrid cycle consists of three main components: relax on a given grid,
restrict the resulting residual to a coarse grid, and interpolate a correction back to a fine grid.
Our multigrid solver can handle several different types of finite-difference grids commonly
used in numerical computations. Figurel shows how coal se grids are derived from fine grids
for vertex-centered, cell-centered and staggered grids. Alt bough the main steps in a V-cycle
are the same for all these gfids, restriction and interpolation operators can have different forms
on different grids. On a vertex-centered grid we use a full-weighting stencil (9-point averag-
ing on a 211 grid) to make the V-cycle scheme converge well when a point wise red-black
Gauss- Seidal (GS) smoother is used; whereas on a cell-centered grid, a nearest-neighbor sten-
cil (4-point on a 21> grid) can be used with the pointwise red-black CiS smoother to achieve a
good convergence rate. We also point out that, on a vertex-centered grid, the use of the near-
est-neighbor restriction stencil with the point-wise C~S sn loother dots not even result in con-
vergence on our test problems, but the use of a Jacobi smoother with the nearest-neighbor
restrict ion stcnci 1 results in convergence but with a slower rate. The operator for transferring
from a coarse grid to a fine grid is basically bilinear interpolation for all grids. Since fine and
coarse grid points do not overlap on cell-centered and staggered grids, one needs to set the
values for grid points at the boundary of coarse grids before a bilinear interpolation operator
can bc applied. More details on the constructions of restriction and interpolation operators for
different types of grids can be found in [12].

x
x
x

x
x
!: -- I_13

- x [RI
X x x x

xx x x
‘ x X x x
X x x x

x x

x x

I/ig[II.c I: Coarsening of thr~, types of grids: vertex-centered (top-left), cell-centered
(top-right) and staggered (bottom).

l~igurc 2: Restriction stencils for interior point c al~d boundary points a and b.

Our multigrid solver can solve Dirichlet and Ncurnann problems for the grids
depicted in figure 1. Periodic boundary condition is also implemenkd for a special case used
in the NS flow solver (to be discussed later). The Dirichlct and N’eumann boundary conditions
are applied only to the original (finest) grid; a homogeneous (zero) boundary condition is used

4

.

on all coarse grids since residual equations are solved there. In the case of a Neumann bound-
ary condilion, where the unknowns are solved on all grid points including those on the grid
boundary, restriction stencils are not well-defined for boundary grid points. Take for example
the vertex-centered grid in figure 2, where a 9-point full weighting stencil is uscxl for restric-
tion, This can be done naturally for the interior point c. For boundary points a and b, however,
only a subset of the neighboring points are within the grid and therefore weighting stencils on
those points still need to be defined in some way. On the other hand, it is reasonable to have
the following discrete integral condition satisfied betwe-a 1 a pair of coarse and fine grids:

(1)

where ll,j and [Iij are solutions on coarse and fine grids, and AIJ and (Iij are areas of grid cells
on coarse and fine grids, respectively. Restriction stencils for interior and boundary points that
satisfy equation (1) are given in figure 2.

When solving a Poisson equation with a Neumann boundary condition, the solution
is determined up to a constant. We use the following strategy to make sure the application of
rnultigrid cycles converges to a fixed solution: after every relaxation on each grid, we perform
a normalization step by adding a constant to the computed solution so that its value at a fixed
point (WC pick the point located at the center of the grid) is zero. Our nutnerical tests show this
simple step results in a good convergence rate for Neumann problems.

B. The Second-Order I’reject ion Method

We now give a brief description of the second-order projection method for solving
the incompressible Navier-Stokes equations in a dimensionless form

au
~ + (u .V)u =--Vp+Rc-’Au

(2)
V“u==o

where u E R’] (n = 2 or 3) is the velocity field, p E R is the pressure field and Re is the Rey-
nolds number. A typical problem is to find u and p satisfying (2) in a domain Q for a given
initial velocity field UO in Q and a velocity boundary condition Uh on ilf). The projection
method for solving equations (2,) is based on the Hedge decomposition which states that any
vector field u can be uniquely decomposed into a sum of U1 + U2 with v o u 1 = O and
U2 = V + for some scalar function +. The projection method proceeds as a type of fractional
step method by first writing the momentum equation in (2) in an equivalent form

$- = 1’ (Re-lAU - (u “ ~’) U) (3)

where]> is an orthogonal projection operator which projects a smooth function onto a diver-
gence-free subspace. I@ation (3) can be viewed as the result of applying 1) to the momentum
equation in (2) which can be rewritten as

a u

z“
+ v]) = Re-’Au - (U “ V)u. (4)

‘\
/

‘I’he projection operation removes the pressure gradient in (4) because Vp is orthogonal to the
projection. Thus if we let the right-hand side of (4) be a vector field 1< then V]) = (] -]’) V.
The second-order projection method in [2] is a modification to the original projection method
proposed in [6] to achieve a second-order temporal accuracy and an improved numerical sta-
bility for the nonlinear convection. It uses the following hmporal discretization on the
momentum equation at each halftime step n+ 1/2

(5)

where wc assume the velocit y U’l is known, and fik is an intermediate vclocit y field that satis-
fies the same boundary condition as the physical velocity. The discretizations in (5) is second-
order accurate in time provided that the convection term can be evaluatexl to the same order of
accuracy at time step n+ 1/2. The superscript k in (5) indicates an iterative process is used for

‘+1 ~ the pressure at halftime stepcomputing u“ + 1, the velocity at next time step, and p ,
n + 1/2: given a divergence-free field u’I and the pressul e filed p’l- ‘n, we set P’*+ 1210= P“- 1’2
and solve (5) for fi~. Since the correct p ‘+ lfl is not known, the computed fik is usually not
divergence-free; but fik can be used as a guess for u“ + 1 find is used to compute a new guess

‘+ 112 it is used in (5L PI ~~ll)ut~,*for p“+ 1 ‘2. Once we have a new guess for p ‘~+ 1. This itera-
‘ n+l/2, ktive procedure is repeated at each time step until p + p and UL + u’)+ 1. In

practice, wc found 2 to 3 iterations would be enough to get a satisfactory convergence.
The convection term (u “ V) u is evaluated at IIalf time step n+ 1/2 using only the

‘1-]/2 On the staggered grid shown in figure 1, the pressure p isvelocity Z/ and pressure p .
defined at CC1l centers, horizontal velocity u and vertical velocity v are defined at cell edges.
I,et us denote cell (iJ) as Ihe cell whose center is located at (i - l/2) Ax, (j - l/2)Ay for i = 1 . . .
1 and j = 1....1. (u “ V) u is then evaluated at i, j - 1/2 fol u component and i - 1/2, j for v conl-
ponent. The discretization for u component, for example, has the form

lll_l/2j- l/2+ r1i+l/2, J-l/2[(Z4” V) U] U= -—:- z ‘ - - — - - (!’=:fl~2~;;’!~~”!’2’j- 1’2)
vi j_ ~ +\’i,j

-1-’
2

___ ~“I,J”At~)J- 1 ~

where ui * ~,2 j * ~,2 are velocities at cell centers, Z/i j and vi j are velocities at cell corners
and all velocidcs are assumed to be at time n+ 1 /2. S’ince Z/t’ is the only velocity available at
the start of computation for time step n+ 1, we use Taylot expansions of second-order accu-
racy in both time and space, as was done in [2] and [3], to find velocities at appropriate loca-
tions and time for computing the discrete convection terln. lb improve numerical stability, a
Godunov-type procedure combined with an upwind schcrne is used in determining velocity
values at cell centers and cell corners. To compute u velocit y at the cell center of cell (i,j), for
example, we first compute

(6)

6

where the expansions for # and u[’ are evaluated on the I ight side of edge (i -1, j - 1/2) and
on the left side of edge (i, j - 1/2), respectively. The choice of u~.+~~~ ~.. ~ ,Z is then made by
the following upwind scheme:

,,R

{

if 141’>0, //1’ + l/R >0 (7)
14::;;: j _ ~ ,2 = o i f Z/L <0, /lR >0

1/’ othersizc

‘I’he spatial derivatives in (6) are computed by first using a centered diflerencing and then
applying a slope-limiting step to avoid forming new maxima and minima in t he velocit y field.
Temporal derivatives in (6) are computed by using the momentum equation (4). Derivatives at
cell corners are computed in a similar way. More details for the constructions of these deriva-
tives are given in [2] and [3].

After evaluation of the convection term, the intermediate veloe.it y ~k can be found by
solving the following I Ielmholtz equation for each veloci t y component:

_Ati~ ~ 2RL~ := 2Re(- [(u o V)u] /]+ 1/2. + .~u)l +A# _ Vpt’- “ 2)

At At (8)

We notice that the condition number of the matrix resulted from equation (8) improves as the
Reynolds number increases for a fixed grid size and a fixed time step, which is fortunate for
eomput ing flows with large Reynolds nu mbcrs. For Hula) (inviscid) flow problems where
RC = co, fik can be updated explicitly (see equation (5)). Once ~L is CXMnputed, A projection
step is performed to find the pressure p‘+lfl’k+l by solving a Poisson equation with a honloge-
neous Neumann boundary condition

Al) = R(U’’, U’l+l) (9)

where fi~ is used in place of U’l+] . Mathematically, equation (9) is the result of applying a
divergence operator to the momentum equations in (2). ‘l’he details for deriving the pressure
equation (9) on a staggered grid with appropriate treatments of the l)irichlet velocity bound-
ary condition is given in [1]. In computing a viscous flow, the multigrid elliptic solver is used
to solve both equations (8) and (9). After the pressure field is computed, u’)+ 1 ‘k+ 1 can be
found by using (5) and this completes one iteration in the next time stepping Un+ 1 and p“+l
are then obtained at the end of the last iteration. The flow of control for our incompressible
Navier-Stokes solver is shown in figure 3.

3. Parallel 1 I]ll)le]llc]]tatiolls

A. Grid Partition and l.ogkal Processor Mesh

The approach we adopted in parallel implementations of the multi grid elliptic solver
and the incompressible flow solver is domain-decomposition. Our objective is to develop par-
allel solvers that can partition any N-dimensional (N< 3) rectangular grids and run on any M-
dimensional (M< N) logical processor meshes. For example, figure 4 shows the partition of
a three-dimensional grid and the assignment of the partitioned subgrids to a three-dimensional
torus processor mesh. As shown in figure 4, logical processor meshes in our code are always
constructed as toroidal meshes. Toroidal meshes are useful in the construction of nested

..— —. —
Initialize multigrid solvers for
each velocity comporrents and
the pressure.
Initla~ize initial and boundar y
conditions for the N-S solver.
,,1,0=,,0 ~l,o=l)o

n=o,~lo

——--+

——

14 “+1 +-u’’ +l’k+l

P“+1 +p’’+l’~+’

~ -–

1Compute right ha=de vectors
for Helmholtz cctuation for velo-
city eomponents~

r

.—— .—.
Call multigrid solver to find
the intermediate velocity field.
——--T-- ____’

*

.1Compute right hand-side veztor
for Poisson equation for pressure.

2%U!%$1Y? R!ld
~’

4!—.—
1

—. —... —
Compute u n+~,k+ I by solvir;g the P “+’’~e --)
last equation in (2). k+k+l

–-’”-”--&----

Figure 3: Flow diagram for the Navicr-Stokes solver

@

Figure 4: A 3D Grid partition and mapping t~aJprocessor

prl+l, k+l

mesh, Only two wrap- around cxmnections were
shown in the logical proccssol mesh.

8

Figure 5: If the left processor mesh contains a 5x5 grid for a Neumann prob-
lem on a vertex-centered grid, then the derived coarse. processor mesh
is the onc on the right.

coarser processor meshes for the mult i grid solver and for dealing with problems with periodic
boundary conditions.

In the multigrid solver, coarse grids and coarse logical processor meshes are con-
structed automatically and recursively based on information on a given fine grid. All grid stor-
ages are allocated dynamically during the grid coarsening, process. In particular, for each
multigrid level, a local coarse grid is derived from the local tine grid and storages are allocated
for the coarse grid. Processors which will get at least one grid point on that coarse grid will be
in an active state on that grid, otherwise they will be in an idle state on that grid. A flag is then
set in each processor for that level depending on the value of the state. A coarse processor
mesh for that coarse grid can then be established by comi nunicat i ng the st atcs among proces-
sors in the fine processor mesh, This process is repeated I cursively until all coarse grids and
coarse processor meshes have been constructed. As an illustration, figure. 5 shows a processor
mesh and its derived coarse mesh for a problem with a Neumann boundary condition. In our
multigrid solver, we put this construction process in an initialization routine which must be
called before the first time the multigrid solver itself is called. The cost of running the initial-
ization routine is relatively small when one needs to call the multigri(i solver a large number
of times, as is the case fo~ the Navier-Stokes flow solver. After executing this initialization
routine, every processor knows its “role” at each level of the multigrid cycle, and also knows
its neighboring processors on that grid level.

1]0 lntwproccssor Communimt ions

To implement the mult igrid scheme and the projection method on a partitioned grid,
we need to exchange data which are close to the partition boundaries of each subgrid local to a
certain processor, Each processor contains a rectangular subgrid surrounded by some “ghost
grid points” which are duplicates of grid points contained in other processors, as shown in tig-
ure 6. l’he number of ghost points on each side of the subgrid depends on numerical algo-
rithms. For the multigrid elliptic solver using a standard 1.aplacian stencil, one ghost grid
point on each side is needed for the local subgrid at each level, whereas for the second-order
projection method, three ghost grid points on each side al e nccdcd in computing the nonlinear

convection term using l’aylor series and upwind schemes. l’herefore in the Navier-Stokes flow
solver, wc allocate storages for three ghost grid points fo] the fine local grid and one ghost
grid point for each coarse grid. For certain operations in the multigrid scheme (e.g. restriction
and interpolation) and for computing the convection term in the projection method, ghost grid
points in the diagonal neighbor are also nwxlcd, as shown in figure 7, Since processors Pi and
Pj in figure 7 are not nearest neighbors, direct data exchange between thcm will introduce a
more complicated message-passing pattern. Fortunately, direct data exchange between Pi and
Pj is not necessary to get the diagonal ghost grid points. 1{ can be verified that all data
exchanges that we need are of nearest neighbor types, as indicattxl in figure 8 for 2D prob-
lems. As can be seen in figure 8 that when data 1 ying on]Jartition boundaries are exchanged,
the sending blocks always include ghost grid points. After data exchanges in tlgure 8 are per-
formed, all ghost grid points shown in figure 6 will bc obtained by appropriate neighboring
processors. Each processor, therefore, only needs to know its nearest neighboring processors
on each logical processor mesh, In solving problems with periodic boundary conditions, data
exchanges are also required among processors lying on the boundary of a processor mesh, and
the sarnc message-passing operations as shown in figure 8 can bc used.

la.-]Pi Figure 7: The dtita in the lower left corner
of the subgrid in processor Pi

❑
,;~: ~:: y::~. are needed by processor Pj, and
.,,,,,. p. $; stored in Pj’s ghost grid pointsJ $;

,= at upl)er right corner.,,:.:.

b

Figure & Data exchanges between
ncighbol i ng processors for
21> problems. q’hc data in
black blocks in each proces-
sor are, sent out., which is
stored in the blocks for
ghost grid points in the
ncighbori ng processors.

lhc parallel efficiency of a parallel code is largely determined by the ratio of local
computations over interprocessor cornmunicati ens. In ou r solvers, the best parallel efficiency
is achieved on the finest grid, where the communication cost could bc easily dominated by a
large amount of computations, and the parallel efficiency degrades as the grid gets coarser.
One way to hide communication overhead and thus improve parallel efficiency on all grids is
to overlap communications with computations. In several places within our solvers, we have
the following sequence of operations for each processor:

(1) Exchange data lying on partition boundaries;
(2) Perform processing on all local grid points.

‘I’o overlap communications with computations, we can perform the following sequence of
operations for the same result:

10

(1) Initiate the data exchange for partition boundaries;
(2) Perform processing on interior grid poinls that do not need ghost grid points;
(3) Wait until data exchange in(1) is complete;
(4) Perform processing on the remaining grid points.

On Intel Paragon, we implemented the second SCI of opei ations above. i n the mult igrid solver
and the flower solver using asynchronous message-passing calls. For onc full V-cycle in the
elliptic solver, for example, the performance improvement on a 256x256 grid partitioned
among 256 processors is about 15Y0, and the improvemel It on a 2563 grid partitioned among
512 processors is about 22.%. Faster and asynchronous intcrprocessor communication can also
be achieved on Cray KID by using its shared-memory communication model, in which direct
memory copy is used at either sending or receiving processors for data exchanges between
different processors. Somes ynchronization between sending and receiving processors, how-
ever, is needed before or after a direct memory copy is performed to ensure the correctness of
a message-passing. On 1’31> processor synchronization is provided only for a group of proces-
sors with a fixed stride in their processor indexes, this shared-memory communication model
can be easily used for exchange of pailition boundary datti in the flow solver and for multigrid
elliptic solver on some fine grids in which data exchanges only occur between nearest-neigh-
bor processors on the original processor mesh.

C. Sofl ware Structures

Our solvers were implemented in C because we think it is the 1 anguage that provides
adequate support for implementing advanced numerical software without incurring unreason-
able y 1 arge overhead, Since our goal is to develop reusable. and high-performance PDF. solvers
which can be used either as library routine or as extensible, template-type code for different
applications, we emphasize in our code design both generality and flexibility. ITirst, we want
the solvers to be able to run on any M-dimensional rectarlgular processor rncshes for any N-
dimensional rectangular grids with (M< N) (fol multig.rid processing, N is usually a power of
2). This requirement introduces some complexities in coding the multigrid solver in terms of
determining the right global indices for lwal grids at each grid level. Storages for all grid vari-
ables are allocated at run time. 1 ‘or the multigricl solver, storages for local coarse grids are
allocated as they are derived recursively from local fine grids. The user is given the option
either to supply the storage for variables defined on the or iginal grid or to let the solver to allo-
cate those storages. An array of pointers to an N-dimensional grid (i.e. an N-dimensional data
array) is allocated, and each of the pointers points to a grid in the grid hierarchy. N-dinlen-
sional data array is constructed recursively from one-dimensional data arrays. This strategy of
dynamic memory allocation offers a greater flexibility in data structure manipulations and
more efficient use of mcrnory than a static memory allocfition, and the user is also alleviated
from the burden of calculating storage requirements for mtrltigrid processing.

There are two major communication routines in the solvers: the communication rou-
tine for the flow solver exchanges partition boundary data only on the original grid; the con~-
munication routine for the multigrid solver can exchange partition boundary data for all fine
and coarse grids, using a hierarchy of processor meshes. ‘lb make the code portable across dif-
ferent message-passing systems, we defined OUI own generic message-passing library as an
interface with our solvers. To use a new message-passinf, system, we only need to extend the
generic message-passing library to that system without changing any code in our solvers. Cur-
rentl y, our generic message-passing library can accommodate NX, M P] and WM. A separate

11

data exchange routine has also been implemented for the flow solver, which uses the shared-
mcmory commu nicat ion library on Cra y T3D.

Simple user interfaces to the parallel solvers have also been constructed, l’he elliptic
multigrid solver can be used as a stand-alone library routine with both C and F’ortran inter-
faces. After initializations of the problem to be solved and some algorithm parameters, a pre-
processing routine must be called before the first time the multigrid solver routine is called.
The preprocessing routine constructs the set of nested grids and the corresponding set of logi-
cal processor meshes. l’he, flow solver can be used as a general-purpose incompressible fluid
flow solver on a rectangular, staggered finite-difference grid for problems with Dirichlet or
periodic velocity boundary conditions. To use the multigj id solver as a kernel for evaluating
velocity and pressure fields, the preprocessing routine must be called for each velocity compo-
nent and the pressure, since they are defined on different grid points on a staggered grid.
‘1’hcrcfore separate data structures will be constructed in t he preprocessing routine for each
velocity component and the pressure, which will be used in subsequent calls to the multigrid
solver.

4. Numerical Experiments and Parallel Pcrformanw
We now report numerical experiments made to examine the numerical properties of

the parallel solvers on a few test problems, and parallel performances in terms of speed-up and
parallel scaling of the solvers on Intel Paragon and Cray ’13D systems for problems with dif-
ferent sizes and granularities.

A. The Mliptic Multigrid Solver

The multigrid elliptic solver was first tested on 1 Ielmholtz and Poisson equations
with known exact solutions. Table 1 and table 2 show the convergence rates of the mult i grid
solver from solving 211 and 3D Helrnholtz equations

–Au + Ii = f

with Dirichlct boundary conditions. The runs were performed on Intel Paragon. Errors dis-
played are the normalized maximum norm of the difference between a computed solution and
the exact solution, The tables show the number cycles needed in each case to reach the order
of discretization error (or truncation error). At each grid level, two red-black relaxations were
performed. Although the full V-cycle scheme is usually considered a lot more efficient than
the V-cycle scheme in sequential processing [4], it seems not necessary the case in terms of
total execution time cost in parallel processing. As shown in the tables, for the 2D problem,
even though the V-cycle scheme takes three more cycles to reach the same order of error than
the full V-cycle scheme, the CPLJ t i me for both schemes are about the same for that test prob-
lem; but for the W test case in table 2, the full V-cycle scheme is still a little more efficient.
With a domain decomposition of both fine and coarse grids, parallel efficiency degrades as the
processing moves to coarser grids. Since the full V-cycle scheme dots more processing on
coarse grids, its parallel efficiency is worse than the V-cycle scheme. For a large conlputa-
tional grid with many levels of coarse grids, the higher numerical efficiency of the full V-cycle
scheme may not improve overall computational performance due to its worse parallel effi-
ciency, as is the case for the 2D case in table 1. For appreciating the effectiveness of the nmlti-
grid scheme which has a rate of convergence independent of grid sizes, the errors after a large

12

number of red-black relaxations on the finest grid are also shown in the last rows of the tables.
Although not shown in the paper, the convergence rates of the multigrid solver were also mea-
sured for cell-centered grid and staggered grid. We found for the same model problem the
convergence speeds are slightly slower on those grids, which could be duc to the usc of differ-
ent restrict ion operators.

‘lhblc 1: Numerical Convergence: 21) IIelmholtz Solver
r

t-

Schcme

Fall V-cycle

V-cycle

Single grid

‘I’able 2: Numerical Convergence: 31) IIelmholtz Solver
-- —— ———- ————.-—— .

Riii:+$EE
‘l%e parallel performance of an application code. is usually judged by two nleasure-

ments: speed-up and scaling, Speed-up is measured by fixing the problem size (or grid size in
our case) and increasing the number of processors used. Scaling is measured by fixing the
local problcm size in each processor and increasing the number of processors used. Although
a nice speed-up can be obtained for many applications with a small number of processors, the
reductions in CPLJ time often become very small when a large number of processors is used.
This phenomenon is largely inevitable, as stated in Amdahl’s law, because as the number of
processors used increases for a certain fixed problem size, the communication cost (e.g. the
latency for message-passing) and the cost for global operations will eventually become donli-
nant over local computation crest after a certain stage, which makes the influence of a further
reduction in local computations very small on the overall cost of running the application. On
the other hand, scaling performance of an application seems to be a more rcatistic measure of
its parallel performance, since a code with a good parallel scaling implies, given enough nunl-
bcr of processors, it can solve a very large problem in about the same time as it requires for
solving a small problem, which is indeed one of the main reasons to usc a parallel machine.
Figure 9 displays two sped-up plots for a multigrid V-cycle and a full V-cycle for solving 211
and 3D 1 Iclmholtz equations wjt h a Dirichlet boundary condition on a vertex-centered grid,
measured on Intel Paragon and (lay T3D systems. For a comparison, an ideal speed-up curve
for one test case is also shown. The code was compiled with the -02 switch on both machines.
The grjd size for the 2D problem is 512 x 512, and the gj id size for the 31> problem is
64x 64x 64. The maximum number of processors used for the 2D problem is 256 on both

13

machines. For the 31> problem, all 256 processors were used on the “J3D (in which case a rect-
angular processor mesh of dimensions 4x8x8 wm used) and 512 processors were used on the
]’aragon.

[Figure 9 to be placed hwe, see it at the end of fcxf]

In terms of single processor performance, we found for our multigrid solver that
Cray T3D is about 4 times faster than Intel Paragon, 13ut since the implementation of PVM on
T3D, which we used in our wde for message-passing, is relatively slow for interprocessor
communication, the performance difference for a parrdlel application on both machines tends
to become smaller as granularity of the problem gets fine]. We can sw for both 21> and 3D
problems that the V-cycle scheme has a slightJy better spe..d-up performance than the full V-
cyclc scheme, which is expected since the full V-cycle scheme does more processing on
coarse grids. For the 2D problem, speed-up started to degrade when more than 16 processors
were used, and for the 3D problem, the degradation started when more than 8 processors were
used, Despite the degradation in speed-up, we can still sec some reducti on in CPU time when
the largest number of processors was used in each case.

[Figure 10 be placed here, see it at the end of’ text]
[Figure 11 be placed here, see it at the end o!’ text]

Figure 10 shows the scalings of the parallel multigrid solver on Intel Paragon for
problems with three different granularities, using up to 5 J 2 processors. Figure 11 shows the
scalings of the same problems on Cray T3D, using up to 256 processors. Shown in the plots
are the ratio of CPU times of using n processors versus using one processor. On each of the
scaling curves, we fix the local grid size and increase the number of processors, so a flat curve
means a perfect scaling. Since a larger global grid has more coarse grid levels for a complete
V-cycle or full V-cycle, cost for processing on coarse grids also rises as the number of proces-
sors increases, and therefore it has a negative effect on the scaling performance. 1.ike speed-up
performance, scaling performance is also largely determi I led by the ratio of local computation
cost versus communication cost. This ratio can be dependent on both nun~crical/parallel algo-
rithms and hard ware/software performances on each specific machine. We can see from all the
plots in figure 10 and 11 that scrding performance improves as the size of local grid increases.
This improvement is expected for an iterative scheme on a single gricl, since the computation
cost scales as O (n) , where n is the number of grid points in the local grid, whereas the conl-
munication cost scales as O (n “2). For a multigrid scheme, it can still be shown that both
computation cost and communication cost scale with the same orders as on a single grid [7].
In addition, message-passing latency does not increase as proportionally since the number of
messages communicated is still roughJy the same for a larger locaJ grid (not exactly the same
because more coarse levels are involved) though the size of each message is larger. We can
also sw V-cycle scheme scales somewhat bcttcx thanfull V-cycle scheme, which is expected
since the latter does more operations on coarse grids. The. scaling plots also show 211 test
cases scrdcs better than 311 test cases, which we think is due to the fact that 31> grids have a
higher surface to volume ratio than the 2D grids and thus the ratio of computations to comnnl-
nications is smaller for 31> cases. As for a comparison between Intel Paragon and Cray T3D,
our results show that the scalings on Paragon are slightJy better than on ‘13D. This could be

14

cxplai ned by the fact that single processor speed on T3D is much faster than on Paragon,
whereas the speed of interprocessor communication on 1’3D is not proportionally faster when
PVM is used for communication.

B. TIIc lnconqwmsiblc lVavier-Stokes Solver

The parallel Navier-Stokes solver was first tried out on a test problem with the fol-
lowing exact solution

li = -COS (x) sin (y) C-2”RC v = sin (x) cos (y) ~,-2f/Rc

(lo)

l’hc purpose of the testis to examine the convergence rate. of the flow solver, l’hc computation
was performed in the unit square O <x, y <1 with initial and (time dependent) boundary con-
ditions specified by the given solution, For numerical stability of the Godunov scheme used in
discretizing the convection term, the time step, At, is restricted by the C1~I. condition

+UAx tn..< 0.5, (11)

where Ax is the size of grid cells and Unlflx is the maximum value in the current velocity field.
In using multigrid solver for solving velocity and pressure equations, wc perform 4 full V-
cycles in each call to the elliptic solver. On a G4x64 grid, we found 4 full V-cycles can reduce
the residual error to the order of 10 ’10 for the test problem whose solution norm is one, which
we think is good enough for our purpose. Table 3 shows tile convcrg,encc rate of the computed
vclocit y field to the exact velocity field using three Reynolds numbers. ‘1 ‘he velocit y was com-
puted to time= 3.12, which is about 400 time stepson a &lx64 grid, The, error in table 3 was
measured by

where E (u) k is the error measured on a grid of size 2~ x 2~. A second-order rate of conver-
gence can be seen from the data in table 3. The rate improves slightly as the grid become finer,
possibly due to better accuracy on finer grids. The rate also drops slightly as the Reynolds
nu mbcr increases, which could be a result of more mr mcl ical noise introduced at higher Rey-
nolds number calculations.

Our next numerical experiment on the flow solvet is to simulate an evolving 21>
driven-cavity flow. The computational domain is still in a unit box 0< ,x, y <1. The no-slip
velocity boundary condition is applied to all boundaries except at the top boundary, where the
velocity value is given, We first test the solver on the problem in which the velocity initial
condition is specified by u = O inside the domain, and tlie velocity at the top boundary is
always one. Figure 12 displays the velocity vector fields which show three stages for time=

15

0.16, 3.91md 15.63 in the evolution of the flow, computed on a 256x 256 grid with the Rey-
nolds number = 5000. The CFI. number (i.e. the right ha!ld-side of (10)) used in the calcula-
tion is 0.4, and a total of 10,000 time steps was computed to reach the. last state at time =
15.63. Figure 13 shows the vorticity structures at time= 3.91 and 15.63. We found the vortic-
ity structure at time = 15.63 is similar to those obtained by solving the steady incompressible
Navier-Stokes equations (e.g. [10]). In running the parallel solver on Cray “13D, the global
staggered grid was partitioned and distributed to an 8 x 8 logically rectangular processor
mesh, In computing the velocit y vector field, velocity COI nponents dcthcd on cell cdg,cs were
averaged to the center of cells. For better visibilit y, the vector fields shown in figure 12 are
actually 32 x 32 data arrays which were obtained by avertiging the 256 x 256 velocity vectors
from the simulation. Vorticit y fields were computed at ccl 1 corners by central diffcrencing.
The velocity vector plots in figure 12 show clearly how t he cavit y flow develops from its ini-
tial state to the final steady state which is characterized by a primary voricx in the center of the
unit box and two secondary vortices at the two bottom corners and a small vortex at the upper
left corner (e.g. [10]). We also noticed, when reaching the final stage in figure 12, that the
change of numerical divergence of the computed velocity field before and after projection is
very small. This is because, when the steady state is reached, the intermediate velocit y field
would be computed using the correct pressure field to result in a corrccl velocity field. F,ven
though the initial cmndition is not continuous along the top boundary and the, boundary condi -
tion is not continuous at the two upper corners of the unit box, the numerical computation of
the flow solver turns out to bc quite stable.

Table 3: Second-onkY convergence Me for several Reynolds numbers

3000 2.253 1.879 6.120 1.952 1.583
E-5 E-6 E-6

x::..E:_l_::M;:_
[Figure 12 to be placed here, see it at the end of text]
[Figure 13 to be placed here, see it at the end of text]

Rate
—.—
2.035 -

1.996

1.870

5122

7.568
]~-7

3.964
E-7

2.970
E-7

The flow solver was next tried on a driven-cavity flow problem with some smooth
initial and boundary conditions. The top boundary now n loves with a slip velocity Ut (x) =
16X2 (1- X2) and the initial velocity field is specified tlwough a stream function VJO (x, y) =
(Y2 - Ys) U[(.x). q’hc velocity is tllcn computed by ~ = -VJY and v = Y’x. II) this Case, wc

wanted to test the numerical stability of the flow solver on problems with large Reynolds
numbers which will result in a very thin boundary layer at the top boundary. Figure 14 dis-
plays a velocity vector field and a vorticit y contour from a calculation with I/e= 10$, at time
=4.69 for a total of 3000 time steps using a 256 x 256 grid. Figure 15 displays the result from
a calculation with Re = 1 (P for a total of 7000 time steps on a 512 x 512 gricl, “1’hcse computa -

16

tions were performed on Cray T3D using 64 processors, We noticed the computations of our
solver at these Reynolds numbers seem still numerically slable, which we can judge by check-
ing the convergence rate of the pressure equation and the numerical d ivcrgcnce of the com-
puted velocity. ‘1’he computed flow structures at these Reynolds numbers, however, are quite
different from that obtained from the computed flow with Re = 5000. First, at these high Rey-
nolds numbers, the computed flows did not show any sigtl of approaching a steady state after
computing the large numbers of time steps; while with Rc = 5000, for the same initial and
boundary conditions, wc found a steady state can be reached after computing a smaller nunl-
bcr of time steps. Secondly, we can see some interesting flow pat(erns which do not exist in
the flow with Re = 5000. As shown by the vorticity contours in figure 14 and 15, the vorticit y
structures in these high Reynolds number flows are much more complicated. We can see a
large amount of vortices are generated from the top boundary and then being flushed down
along the right wall. Once these vortices reach the neighborhood of the lower right corner,
they are pushed toward the interior of the box. We found the vorticit y plot in figure 16 is sin]-
ilar to what reported in [11] where a different algorithm was used on the same problem.

[FiguI.e 14 (0 be placed here, see it at the end of text]
[Figure 1S 10 be placed hwc, scc it at the end of text]

l’hc second problem we tested on our flow solver is an inviscid fluid flow for which
the l~ular equations are solved. The computational domail I is again restricted to a unit box, and
a pcriodicity of one is assumed in both horizontal and vel tical directions. The initial velocity
field is given by

tanh (y - 0.25)/p for
1! = {

y >0.5

tanh (0.75 -y) /p for y >0.5 (12)

v = bsin (2rcx)

where p = 0.03 and 5 = 0.05. Thus the initial flow field consists of a jet which is a horizon-
tal shear layer of finite thickness, perturbed by a small amplitude of vertical velocity. Since the
viscous term is dropped, the velocity can be updated explicitly and the multigrid elliptic solver
is only used for solving the pressure equation (9). On the staggered grid we used, the pressure
field is defined on a cell-centered grid whose linear dimension, say N, is preferably taken as a
power of 2 for the convenience of applying grid coarsening. Thus there are N2 unknowns for
the pressure. Since velocity field is only related to the prussure gradient in the momentum
equations, it makes sense to have the velocity defined on an (N -1) x (N -1) grid, as
shown in figure 16.

P P P P Figure 16: An example of a staggered grid used
v r v
p .1 p u p .lp for computing the doubly periodic
v v v shear flow with N = 4. llnknowns for
p .1 p u p .1 p vclocit y and pressm e, in the grid are
v v v- shown.
P J p u p .1 p

Therefore there are (N- 1)2 unknowns for each velocity component. Since the velocity is pcri-

odic, a periodic domain should have a dimension of (N - 1) x (N – 1) . Since the pressure
gradient is a function of velocit y, it must have the same dimension of pe.riodicity. Thus the
physical boundary condition for the pressure equation (9) in the horizontal direction, for
example, can be specified as

Poj=P, j+ PN_2j-PN_lj P
N+ I,j

= PN,j+P2 l--PI j. (13)

In a muhigrid solution of the pressure equation, the boundary condition (13) is clearly for use
on the original, finest grid. The use of condition (13) on any coarse grid, however, is incorrect
(our numerical experiments indicate the use of(13) on coarse grids will blowup the computa-
tion quickly). Since the unknown vector on a coarse grid is the diffcrencc, of an exact solution
and an approximate solution on the fine grid restricted to I hat Coal’se grid, it can be regarded as
an approximation to the derivative of the solution on the fine grid. Since a derivative of the
pressure field of any order is still periodic with the same period as the velocity field, a reason-
able boundary corrdilion for pressure on coarse grids is

P. = P N PN+, = P,. (14)

Although condition (14) imposes a period which is one g[id cell (of the fi ncsi grid) larger than
the velocity period, wc found it is easy to apply it to all tile coarse grids, and our numerical
results show it works well.

Figure 17 shows vorticity contours of two early st ates of the inviscid periodic shear
flow. Figurel 8 and 19 show vorticity contours of the flow at time= 1.25 and 2.50, computed
from a 128 x 128 grid and a 256 x 256 grid, respectively. The Cl 71. number used in the com-
putations is still 0.4. On the 256x 256 grid, a total of 1600 time steps were computed to reach
time = 2.50. These vorlicit y plots show how the shear layers, which form t he boundaries of the
jet, evolve into a periodic array of vortices, with the shear layer between the rolls stretched
and thinned by the large straining field there. A comparison between figure 18 and 19 also
shows a better resolution of the vorticit y structure was obtained on the 256x 256 grid.

[Figure17 to be plwed here, see it at the end of text]
[Figure 18 to be placed here, see it at the end of text]
[Figure19 to be placed here, see it at the end of text]

The parallel performances of the incompressible flow solver were also evaluated in
terms of speed-up and scalability y. In each of the parallel ~Jerformance measurement, we ran
the flow solver on the driven-cavity problem fol one time step, excluding any initialization
and assignment of initial and boundary conclitions. Figure 20 shows the speed-up curves of the
flow solver on Intel Paragon and Cray T3D systems for three different problem sizes (ideal
speed -up curves arc shown again for comparison). The sped-up performance improves as the
problem size increases, as expected, For the 512.x512 grid, no significant reduction in execu-
tion time could be obtained afler more than 64 processors were LISed. By running the flow
solver on a single processor, we found 13D is about five times faster than the Paragon for the
code compiled with the -02 switch. But on 256 proccssols, K3D runs only about 1.5-2.0
times faster than Paragon depending on problem sizes, because, as shown in figure 20, the
speed-up performance of the flow solver on Paragon is better than on 13D. Figure 21 shows
scaling performances of the parallel flow solver on 13D and Paragon for three local problem

18

sizes. Again, we seethe scaling improves as the size of local grid increases on both machines.
In measuring the scalings of the flow solver, we used smaller local problem sizes than we did
for the multigrid elliptic solver (see figure 10 and 11). We expect the flow solver to have better
scalings than the multigrid elliptic solver because the flow solver, even though calling the
elliptic solver several times at each time step, does substantially additional processing on the
finest grid, Indeed, this scaling difference between the two solvers can bc verified by looking
at the scaling curves for the 64 x 64 local grid for the tlow solver in figu]c 21 and for the nnd-
tigrid full V-cycle (which is used in the flow solver) in figure 10 and 11. In view of the scaling
performances in figure 21, we would claim that our parallel flow solver scales quite well on
large numbers of processors as long as the local grid size is not smaller than 64x 64.

[Figmw 20 to be placed here, scc it at the end 01 text]
[Figure 21 to be phiccd here, scc it at the end of text]

5. conclusions”
In this paper we presented multigrid schemes for solving ellipt ic PDEs and a second-

order finite-difference projection method for solving the Navier-Stokes equations for incom-
pressible fluid flows. Our parallel implementation strategies based on domain-decomposition
arc discussed for implementing these algorithms on distri buted-memory, massivel y parallel
computer systems. Our treatment of various boundary CO1 Iditions in implementing these paral-
lel solvers are also discussed. We designed and implememed these solvers in a highly modular
approach so that they can be used either as stand-alone solvers or as expandable template
codes which can be used in different applications. Several message-passing protocols (MP1,
PVM and Intel NX) have been coded into the solvers so that they arc portable to systems that
supporl one of these interfaces for interprocessor communications.

Numerical experiments and parallel performance measurements were made on the
implement cd solvers to check their numerical properties and parallel efti ciency. Our nu meri -
cal results show the parallel solvers converge with the order of numerical schemes on a few
test problems. Our numerical experiments also show the flow solver is stable and robust on
viscous flows with large Reynolds numbers as well as on an inviscid flow. Our parallel effi-
ciency tests on Intel Paragon ancl Cray T3D systems show that good scalability on a large
number of processors can be achieved for both the multigrid elliptic solver and the flow solver
as long as the granularit y of the parallel application is not too small, which wc think is typical
for applications running on distributed-memory, MIMD lnachines. For future work, we plan
to extend the flow solver to 31> problems and explore a finite-elements implementation of the
projection method for solving problems in unstructured domains.

Acknowluigments:
I want to thank l>r. Robert Ferraro (Jet Propulsion Laboratory) for his encourage-

ment and support on this work, 1 would also like to thank Dr. Sefan Vandewalle (California
Institute of Technology) and Dr Steve McCormick (University of Colorado) for some helpful
discussions on multigrid methods. This work was carried out at the Jet Propulsion Laboratory
(JPL), California Institute of Technology (Caltech), under a contract with the National Aero-
nautics and Space Administration (NASA) and as a part of the NASA 1 Iigh-Perfornlance

19

Computing and Communications for Earth and Space Sciences Program. ‘l’he computations
were performed on 1 ntel Paragon parallel computers opef ated by JP1, ancl by the Concurrent
Supercomputing Consortium at Cal tech, and on the Cray T3D parallel computer operated by
J]’I,,

20

References:
1. C. Anderson, “l>erival ion and Solution of the Discrete Pressure Equations for the incom-

pressible Navier-Stokes Equations,” Lawrence Berkeley Laboratory Report, LBI.-26353,
1988, Berkeley, CA

2. J. H. Bell, P. Colella and H. GlaT,, “A Second-Order Projection Method for the Ineom-
prcssiblc Navier-Stokes Equations,” J. Comp. Phys., 85:257-283, 1989

3. J. R. IIell, P. Colclla and 1,.11, Howell, “An llfficient Second-Order Projection Method for
Viscous incompressible Flow.” Proceedings, 10th AIAA Computational l:luid Dynamics
Conference, IIonohlhl, 111, pp.360-367, 1991

4. W. Brig,gs, “A Multigrid ‘ltitorial,” SIAM, Philadelphia, 198’7

5. T. F. Chan and R. S. Tuminaro, “A Survey of Parallel Multigrid Algorithms”, in “Parallel
Computations and Their Impact on Mechanics”, A. Noor, W., Vol: AM]) 86, 1986

6. A. J. Chorin, “Numerical Solution of the Navicr-Stoke.s I@ations,” Math. Comp., vol. 22,
pp. 745-762, Gel. 1968.

7, G. Iiox, et. al., “Solving Problems on Concurrent Processors.” Vol. 1, Prentiee Hall, Hngle-
wood Cliffs, New Jersey, 1988

8. S. F. McCornlick, “Multilevel Adaptive Methods for l’artial Different ial Equations.” Ih-on-
tiers in Applied Mathematics, SIAM, Philadelphia, 1989

9. F. Roux and D. Tronleur-Dcrvout, “Parallelization of a Multigrid Solver via a Domain
Dceomposition Method.” Manuscript, 1994

10. R. Schreiber and H. B. Keller, “Driven Cavit y Flows by Efficient Numerical ~’bchniques.”
J. Comp. Phys., 49,310-333, 1983

11. Wcinan Ii and Jian-Guo l.iu, “Fxsentially Compact Schemes for lJnstcady Vkeous
Incompressible Flows.”, manuscript.

12. P. Wesse]ing, “An Introduction to Multigrid Methods”, Pure & Applied Mathematics, A
Wiley-Interscienee Series of Texts, Monographs& Tracts, John Wiley& Sons, 1991

21

100

10

.01

.001

Speed-up on a 2 D P r o b l e m

100

10
:c;@u
a,
w

~]

al

El
E,

.1

.01

Speecl-up on a 3D Problem

.

o 7 4 6 8 10
N u m hcT of IIr:, cos soIs lr[pow c] of .7

I’;lrriqorl : C>IICI V-cycl

+— l’arrlqorl : Onc fl]llv-cych

.4 (:1.iy 7’ 3[) : 01)0 v. Cych
-.-.-.6 --- (:lly ‘1’ 31) : 01)[2 fllllv-cyck

----!??--- /i ~)(!7r<>Ci SJICC(]-Ugl

Figure 9: Speed-up performancxx of the elliptic multigrid solver,

22

3.0
.1
-.

[1
.

,1
. .

[1
\

r:. .

u,
c)

S c a l i n g o f a 21) V - c y c l e Scaling of a 21) full V-cycle

(1

N U1[I k>cl

~—

-——sl———

Scaling of 31) V-cycle

6 -

4 - “

2-

i

()

S(:a].ing of a 3D full. V-cycle

4’
:,L)
a)
x
a)
u,
o

o

.2

I ;) .1 6 8 10

lriguw 10: Scaling of the rnultigrid solver on lntel l’aragon.

23

\
- 3 .:,
[:

E,

ql
c1

S c a l i n g o f a 2D V – c y c l e

@ ? 4 6 8 10

Scaling of a 3D V--cycle

c,
0
,,

0

4’:

Sea].jng of a ‘2D full V--cycle
8

-/

6 -

5 -

4-

3-

1

[? 4 6 8 1 0

41

0

CK

Scaling of a 3D full V-cycle
2-

() - —

O - .

6

f l - ‘ -.. —.,,--

?-

1

0-

F’igurc 11: Scaling of the multigrid solver on Cray 13D.

24

.

.

. ,.
. ,. .,.. ,.,.
... ,.
.< .,.,. . .

. .

.1

. .

.,

.t
t

t
!

1, .
1 ,
1
1
I

.!

. .

. .

.,

.,

.

.

.

.

.

.

.,,.

. .

. .

l\\ I----A&.*—
! \ \ ,. . , ! I ! t , , , . .

. t, . ,. . . . \ . . . 4 , . . . , ,/

.,, ,!.., $,,,,

.,, ,,,...!!!. ,,1

.,, ,.. ..$.!. .,~! .,,,1

.,, ,,,,, t ., , ,!

.,,,,,., ,..,,

.,,,,,, ,,,.,$, .,..,,,

.,.,,. ,,...,<

.,..,, ,...,,

.,...,

,,,,,,.
.,,.,,.
.
.
.
.
.

.
. . . . ,.
.
.,.,., .

.,..
..,.

Figure 12: Velocity vector plots from
computing an unsteady
driven-cavity flow with Re =
5000. ‘l’he simulation was
done on a 256 x 25C grid,
using 64 processors on 131>.
Shown are plots at time=
0.16 (top left), 4.69 (top right)
and 15.63 (bottom). A steady
state. of Ihe flow can be very
slowly reached.

.%./-- 0/.-,,..- ., ,1.

. ,, . . % % - - - - - - /,, > .

. ----- . .

. ...

25

.

l,IW

9,67

0,33

IJ,m

1.W!

B b-f

0,33

e ml

1

2

3

4

5

6

i’

0

9

j

In

11

12

13

14

1s

16

lY

10

19

— — — — - ——. - ~n
Fl, mi B : :++ n .6-/ Y ,nn

n,nfl B,33 n .67

l’igure 13: Vorticity contour plots from a driven-cavity flow with Re = 5000, at time =
3.91 (top) and time = 15.63 (bottom). {irid size= 256x 256.

26

.

1 . 0 0

0 . 6 7

O.w

0 . 0 0

? 1 .04---- .,..- --- . . . -.~..\

.tt

... \

... ,

. . . .
. . .

. . . .
. .

. . .
.
.,.

1

z

3

4

5

f,

7

6

9

e.m 0 . 3 3 B .ft7 1 . 0 0

Figure 14: Velocity vector field (top) and vorticity contour plot (bottom) from the
driven-cavity flow with Re = 10s, at time = 4.69. G1’id size = 256x 256.

27

1

,/,
!.$

.It

.11

.1!
,11
.11

.11

.11

., !., 1

. . t

!,,

. . .

. . .

. . .

. . .

.,,

. . .

.,,

. .---+—::~$ --w+---- - - - -

1

z
3

*

5

6

7

B

9

1.00

0.67

0.33

8.00
0.00 0 . 3 3 0 . 6 7 1 . 0 0

Figure 15: Velocity vector plot (top) and vorticity contour plot (bottom) from a
driven-cavity flow with Re = 10G, at time= 5.47. Grid size= 512x 512.

28

.

*

1.0r——~—-7 1.0r‘-”’r~

0.6
I

0 . 4 - 0 . 4
— ——: _-—

0 . 2 — . — - . 0 . 2

0.0 LA—l------- d o.o L.J-L.Lb.J .l. ..i. ..i
0 . 0 0 . 2 0.4 0.6 0.8 1.0 0 . 0 C).2 C).4 0.6 0.8 1.0

]?igtll.e 17: vorli~ity contour plots from the periodic shear flow at time= 0.0 (left) and
0.62 (right). Grid size = 128 x 128.

29

.

.
b
.

1.0

0.8

0.6

0 . 4

0 . 2

0 . 0
0.0 0.2 0.4 0.6 0.8 1.0

1.0

C).8

C).6

0 . 4

0 .2

0 . 0
0.0 0.2! 0.4 0.6 0.8 1.0

Figure 18: Vorticit y contour plots from the periodic shear flow for time= 1.25 (left)
and time = 2.50 (right). Grid size= 128 x 128.

1.0

0.8

0.6

0 . 4

0 . 2

0 . 0
0.0 0.2 0.4 0.6 0.8 1.0

1.0

().8

().6

().4

().2

0 . 0
0.0 0.2 0.4 0.6 0.8 1.0

Figllre 19: Vorticity contour plots from the periodic shear flow for time= 1.25 (left) and
time =2.50 (right). Grid size = 256x 256.

30

Speed-up on Intel Paragon Speed-up on Cray T’3D

.
A
.

10000

1000

T:
r:
0
[>

100
i
w

Fi

a, 10

1

.1

o 2

Nun, t>er of

~—

F’igul”c 20:

000

100

1

.1

.01

JJI Ocessors 3rI ~,ow cr o f ? Nuntk, er o f r,roccssor E, In pow e~ of 7

G]li SVC::I 17X:)12 ~— G]li sr/,c::112x’Jl?
c: ?,] RVC?:25CX7:,C ~— G,ri sb’(. :256.x2:)6

Grli src’:l? 8x128 -———w— GIL] cl/c’: 12 Eix12B

fi IIctfr.?L S[X!C!d-UL> -——+— A ~,,rf<:l SI)<CCCI.UFI

Speed-up performances of the paral lel Navier-Stokes solver.

Scaling on Intel Paragon
-.10
.1

El
\

f!

a)

SctIlinq on C r a y T3D

i

Figure 21: Scaling Performances of the parallel Navier-Stoktx solver.

31

.

